Journal of Organometallic Chemistry, 204 (1981) 411-414 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

TRANSITION METAL NITROSYLS AS NITROSYLATION AGENTS

II *. PHOTO-NITROSYLATION OF η^5 -C₅H₅V(CO)₃L (L = CO, PZ₃) BY [Co(NO)₂Br]₂

FRITZ NÄUMANN and DIETER REHDER *

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (F.R.G.)

(Received July 7th, 1980)

Summary

 η^{5} -C₅H₅V(NO)₂CO is prepared in 40% yield by the photo-reaction between η^{5} -C₅H₅V(CO)₄ and [Co(NO)₂Br]₂. η^{5} -C₅H₅V(NO)₂CO reacts by an S_N1 mechanism with various phosphines PZ₃ to yield η^{5} -C₅H₅V(NO)₂PZ₃. The phosphine complexes are also obtained by photo-induced ligand interchange between η^{5} -C₅H₅V(CO)₃PZ₃ and [Co(NO)₂Br]₂, or η^{5} -C₅H₅V(CO)₄ and Co(NO)₂Br(PZ₃). In all cases, the main cobalt species formed is Co(NO)(CO)₃. While the one-bond vanadium—phosphorus coupling constants of most of the phosphine complexes are virtually the same (ca 410 Hz), the chemical shift values $\delta(^{51}V)$ (-1328 to -973 ppm rel. VOCl₃) decrease in the order PF₃ > CO > P(OR)₃ > P(alkyl)₃ > PPh₃ > PPh(NEt₂)₂, reflecting the decreasing π -acceptor ability of the ligands. $\delta(^{51}V)$ also decreases in the series of alkylphosphines PR₃ (R = Me, Et, Prⁿ, Buⁱ, Prⁱ, Bu^t) as the cone angle of PR₃ increases.

Introduction

There have been few studies of intermolecular nitrosyl transfer (usually involving ligand interchange of one and more ligands in addition to NO). The cobalt complexes $Co(NO)(dmg)_2$ (dmg = dimethylglyoxime) [1], Co(NO)-(PPh₃)₃ [2], and $[Co(NO)(NH_3)_5]^{2+}$ [3] have been employed mostly in nitrosylation reactions of transition metal complexes containing the Cl⁻ and phosphine ligands. Other transition metal nitrosyls, such as $Ru(NO)_2(PPh_3)_2$ [4] and $Rh(NO)(PPh_3)_3$ [2] react similarly, and there are at least two examples in the literature in which the transfer reagent and the substrate are identical

^{*} See ref. 9 for communication I.

 $([Fe(NO)CO(PPh_3)_2]^+ [6]$ and $Co(NO)(tac)_2$ (tac = dithioacetylacetonate) [5]). Photo-reaction of $Co(NO)(CO)_3$ in CH_2Br_2 has been reported by Seel to give $[Co(NO)_2Br]_2$ [7]. We have used this complex, and its chlorine and iodine analogues (for which a convenient synthesis is given in ref. 8) in photo-nitrosylation reactions with $Cr(CO)_6$ to yield $Cr(NO)X_2(THF)_n$ (X = Cl, Br, I) and $Co(NO)(CO)_3$ [9]. Three ligands (X, CO, NO) are interchanged in this reaction. We have now investigated nitrosylation in the system $CpV(CO)_4/[Co(NO)_2Br]_2/PZ_3$.

Results and discussion

The results are summarized in Scheme 1. In the reaction between $CpV(CO)_4$ and $[Co(NO)_2Br]_2$, about 70% of the cobalt is converted into the volatile Co-

SCHEME 1

(NO)(CO)₃ (I). 40% of the vanadium can be recovered in the form of CpV-(NO)₂CO (II), while about 50% is incorperated in a vanadium-cobalt-bromine cluster (III) of unknown geometry (characteristic data are: V/Co/Br = 2.5/1/2; $\delta(^{51}V) = -509$ ppm rel. VOCl₃; $\delta(^{59}Co) = 3200$ ppm rel. [Co(CN)₆]³⁻; IR: 1690 and 1582 cm⁻¹).

Complex II was previously prepared by direct nitrosylation of $CpV(CO)_4$, $[CpV(CO)_3CN]^-$, or $Cp_2V_2(CO)_7$ in yields <7% [10]; a moderate yield preparation, using the highly carcinogenic *N*-methyl-*N*-nitroso-*p*-tolylsulfonamide, was reported by Herberhold [11].

Complex II reacts with various phosphines PZ_3 in THF solution and at room temperature without irradiation to form $CpV(NO)_2PZ_3$ (IV). The average reaction time for almost complete removal of CO is 10 hours, except for PBu^t₃, for which the reaction is incomplete even after one week. The reactions are of first order and hence the mechanism resembles that found for the thermally and photo-induced CO substitution in $CpMn(CO)_3$ [12] and $CpV(CO)_4$ [13,14]. IR

Ligand L	Cone Angle of L (°) ^a	$\nu(NO) b$ (cm ⁻¹)	δ(⁵¹ V) c (ppm)	1 J(VP) d (Hz)	$\frac{\Delta \nu_{1/2}}{(\text{Hz})}^{e}$
PF3	106	1783	-1328	g	
P(OMe) ₂ CH ₂ -h	115	1692 1595	-1213	512	195
P(OPr ⁱ) ₃	130	1682 1582	-1194	409	135
PEt ₃	132	1682 1584	-1170	400	170
PPh ₂ Et	140	1686 1589	-1143	409	160
PPh3	145	1689 1592	-1115	403	170
PPh(NEt ₂) ₂	120	1686 1588	1075	476	180
PMe ₃	118	1685 1584	-1169	403	190
P(Pr ⁿ) ₃	132	1682 1582		409	135
P(Bu ⁱ) ₃	145	1683 1585	-1127	391	180
P(Pr ⁱ)3	160	1682 1584	-1115	402	150
P(But)3	182	1681 1579	973	342	155

IR AND 51 V NMR DATA FOR CpV(NO)₂L COMPLEXES (L = CO, PZ₃)

^a Tolman's cone angle [19]. ^b 0.01 *M* THF. ^c Bruker WH 90, 23.66 MHz, ca 0.1 *M* THF at 300 K, relative to COCl₃, absolute error ±1 ppm. ^d One-bond ⁵¹V-31P coupling constant, absolute error ±3 Hz. ^e Peakto-peak width of the dispersion signal, absolute error ±10 Hz. ^f $v(CO) = 2048 \text{ cm}^{-1}$. ^g Unresolved. ^h CpV(NO)₂(MeO)₂PCH₂CH₂P(OMe)₂.

and ⁵¹V NMR data of the complexes II and IV are compiled in Table 1. While variations in the $\nu(NO)$ stretching frequencies are small, there is a consistent decrease of ⁵¹V shielding (decrease of $|\delta(^{51}V)|$) in the order

$$PF_{3} > P(OPr^{i})_{3} > PEt_{3} > PPh_{2}Et > PPh_{3} > PPh(NEt_{2})_{2}$$
(A)

and

TABLE 1

$$PMe_3 > P(Pr^n)_3 > P(Bu^i)_3 > P(Pr^i)_3 > P(Bu^t)_3$$
 (B)

The shielding for the PF₃ complex is even greater than for II itself. Except for PF₃, the phosphines in series A exhibit similar steric conditions (cone angles around 130°, and hence this ordering may be considered to reflect electronic factors, i.e. decreasing ligand strength; and we further conclude, from the constancy of the vanadium—phosphorus coupling constants, that π -interactions are predominant (cf. refs. 15 and 16 for a detailed analysis of ⁵¹V NMR parameters). The same ordering of phosphines was found in CpV(CO)₃PZ₃ and [V(CO)₅PZ₃]⁻ complexes [15–17]. Series B, which represents phosphines for which electronic contributions to the ⁵¹V shielding should be very similar, reflects steric influences. Again, the results parallel those obtained for CpV-(CO)₃PZ₃ [18]. It is of interest in this context that the (NO)V(NO) angles calculated from the relative intensities of the ν (NO) bands [20] are alike for PMe₃, PEt₃ and P(Prⁿ)₃ (108°), while for the bulkier P(Buⁱ)₃ and P(Prⁱ)₃, for which the ⁵¹V shielding attains smaller values, this angle amounts to 99° and 97°, respectively.

Experimental

1.90 g CpV(CO)₄ (8.3 mmol) and 1.62 g $[Co(NO)_2Br]_n$ (8.0 mmol) dissolved in 100 ml THF were irradiated, using the irradiation apparatus DEMA 13/12

(Mangels, Bonn) fitted with a quartz immersion well and a high pressure mercury lamp (Philips HPK 125, Mangels). The irradiation was monitored by IR spectroscopy. After 50 min, the CO and NO absorptions characteristic of CpV- $(CO)_4$ (2027 and 1917 cm⁻¹) and $[Co(NO)_2Br]_2$ (1835 and 1759 cm⁻¹) disappear to be replaced by a spectral pattern due to the components I (2110, 2045, 1806 cm⁻¹), II (2048, 1725, 1636 cm⁻¹) and III (1690, 1582 cm⁻¹). To remove I, the solution is evaporated to dryness. The residue is redissolved in 15 ml THF, treated with 70 ml n-heptane, and allowed to stand at 250 K for 1 day. Green-black III crystallizes during this time and is filtered off, washed with heptane and dried under high vacuum. The filtrate, containing II and small amounts of $CpV(CO)_{4}$ and III, is concentrated to ca 1 ml, 2 ml of heptane are added, and the solution is chromatographed on silica gel (70–230 mesh ASTM, column dimensions 35×2.5 cm; eluant: heptane (ca 1.5 l, elution time 2.5 hours)). The first, red fraction is $CpV(CO)_4$, the second, orange coloured fraction contains II, which is isolated as a cocoa-brown powder after removal of the solvent by evaporation at 1 Torr (room temperature). Yield: 40%.

For the preparation of the phosphine complexes IV, a solution of 150 mg of II and an equimolar amount of the phosphine in 5 ml THF is allowed to stand at room temperature for 1 day. Concentration to ca 1 ml and crystallization at 250 K after addition of 5 ml heptane yields pure IV in the case of $PZ_3 = P(OPr^i)_3$, PPh₂Et, PPh₃, $P(NEt_2)_2Ph$ and PR_3 (R = Me, Et, Pr^n , Buⁱ), and mixtures of IV and II for PPr^i_3 and PBu^t_3 . CpV(NO)₂PF₃ is obtained by bubbling a weak PF₃ stream for 1 hour through a solution of II.

All operations were carried out under nitrogen and in dried and oxygen-free solvents.

References

- 1 C.B. Ungermann and K.G. Caulton, J. Amer. Chem. Soc., 98 (1976) 3862.
- 2 A. Sacco, G. Vasapollo and P. Giannoccaro, Inorg. Chim. Acta, 32 (1979) 171.
- 3 J. Armor, Inorg. Chem., 12 (1973) 1959.
- 4 A.P. Gaughan, B.J. Corden, R. Eisenberg and J.A. Ibers, Inorg. Chem., 13 (1974) 786.
- 5 A.R. Hendrickson, R.K.Y. Ho and R.L. Martin, Inorg. Chem. 13 (1974) 1279.
- 6 J.L.A. Rouston, J.J. Merour and A. Forgues, J. Organometal. Chem., 186 (1980) C23.
- 7 F. Seel and G.V. Roschenthaler, Z. Anorg. Allgem. Chem., 386 (1971) 297.
- 8 D. Rehder and J. Schmidt, Z. Naturforsch. B, 27 (1972) 625.
- 9 J. Schmidt and D. Rehder, Chem. Lett., (1976) 933.
- 10 E.O. Fischer, R.J.J. Schneider and J. Müller, J. Organometal. Chem., 14 (1968) P4; E.O. Fischer and R.J.J. Schneider, Angew. Chem., 79 (1967) 537.
- 11 M. Herberhold, R. Klein and P.D. Smith, Angew. Chem., 91 (1979) 241.
- 12 P.S. Braterman and J.D. Black, J. Organometal. Chem., 39 (1972) C3.
- 13 G.C. Faber and R.J. Angelici, Inorg. Chem., 9 (1970) 1586.
- 14 D.G. Alway and K.W. Barnett, Inorg. Chem., 19 (1980) 779.
- 15 D. Rehder, W.L. Dorn and J. Schmidt, Trans. Met. Chem., 1 (1976) 74.
- 16 D. Rehder, W.L. Dorn and J. Schmidt, Trans. Met. Chem., 1 (1976) 233; D. Rehder, J. Magn. Reson., 25 (1977) 177.
- 17 D. Rehder and J. Schmidt, J. Inorg. Nucl. Chem., 36 (1974) 333; R. Talay and D. Rehder, Chem. Ber., 111 (1978) 1978.
- 18 D. Rehder, J. Magn. Reson., 38 (1980) 419.
- 19 C.A. Tolman, Chem. Rev., 77 (1977) 313.
- 20 P.S. Braterman, Metal Carbonyl Spectra, Academic Press, London, 1975, p. 42.